

Remark.

Theorem 7.1.1 (**The Second Derivative Test: Relative Extrema).**

Suppose $f'(a) = 0!$

- *1.* If $f''(a) < 0$, then *f* has a relative maximum at *a*.
- *2. If* $f''(a) > 0$ *, then f has a relative minimum at a.*
- *3. If* $f''(x) = 0$ *, we have no conclusion.*

 \blacksquare

Example 7.1.3.

$$
f(x) = \frac{1}{30}x^{6} - \frac{1}{12}x^{4}.
$$

Use the first and second derivative test to study the relative extrema.

Exercise 7.1.1. Apply the first and second derivative test for $f(x) = x^3 - 3x$.

$$
f'(x) = 3x^{2}-3 = 3(x-1) = 3(x+1)(x-1)
$$

\n
$$
f'(0) = 0 \text{ when } x = \pm 1 \text{ (which points of f:\n
$$
f''(x) = 6x + f''(1) = 6 > 0 \Rightarrow x=1 \text{ is a local min.}
$$

\n
$$
f''(-1) = -6 < 0 \Rightarrow x=-1 \text{ is a local max.}
$$
$$

7.2 Curve sketching

Example 7.2.1. Sketch the graph of $y = f(x) = 1 + \frac{1}{x-1}$ $l_{1}^{(h_{1} + (x))} = 1 + \frac{1}{0^{+}} = +\infty$
 $= 1 + \frac{1}{x-1}$
 $= \frac{1}{x-1}$

Solution.

Step 1. Analyze *f*(*x*).

- 1. domain: $\{x \in \mathbb{R} \mid x \neq 1\}$
- 2. *x, y* intercepts: Let $x = 0$, then $y = 0$; Let $y = 0$, then $x = 0$. \Rightarrow only one intercept: (0, 0) $y = 14 \frac{1}{1}$ $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{\gamma - 1}$
- 3. vertical and horizontal asymptotes:

$$
\lim_{x \to 1^{+}} f(x) = +\infty, \lim_{x \to 1^{-}} f(x) = -\infty \implies \text{vertical asymptote: } x = 1
$$
\n
$$
\lim_{x \to +\infty} f(x) = 1, \lim_{x \to -\infty} f(x) = 1 \implies \text{horizontal asymptote: } y = 1.
$$

Step 2. Analyze $f'(x)$.

$$
f'(x) = -\frac{1}{(x-1)^2}, x \neq 1.
$$

 \star لم - \sim

graph

- 1. interval where *f* is strictly increasing: none $(f'(x) < 0$ in the domain) interval where *f* is strictly decreasing: $(-\infty, 1)$, $(1, +\infty)$ ≤ 0 in the domain domain
- 2. critical points of $f: \mathbf{none} \quad (x = 1 \text{ is not in the domain})$
- 3. relative extrema of *f*: none

Step 3. Analyze
$$
f''(x)
$$
.
\n
$$
f''(x) = \frac{2}{(x-1)^3}, x \neq 1.
$$
\n
$$
f''(x) = \frac{2}{(x-1)^3}, x \neq 1.
$$

- 1. interval where *f* is strictly convex: $(1, +\infty)$ $(f'' > 0)$ interval where *f* is strictly concave: $(-\infty, 1)$ $(f'' < 0)$
- 2. inflection points on the graph: none $(x = 1$ is not in the domain) $f' \pm o$ on its domain

in its natural

mapgoingdown

 \propto

undefined when $=$ I

 \uparrow \uparrow \downarrow

か
バ

 $\lim_{x \to 0} f(x) = |f(0)| = 1$

Step 4. Sketch.

Definition 7.2.1 (Asymptotes)**.**

the line $x = c$ is a vertical asymptote of the graph of $f(x)$

if $\lim_{x \to c^{-}} f(x)$ or $\lim_{x \to c^{+}} f(x)$ is $+ \infty$ or $- \infty$; $\overline{}$

the line $y = b$ is called a horizontal asymptote of the graph of $f(x)$

if $\lim_{x \to -\infty} f(x)$ or $\lim_{x \to +\infty} f(x)$ is *b*.

Note: It may happen that both $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ exist, but they are not the same.

A General Procedure for Sketching the Graph of *f*(*x*)

Step 1. Analyze $f(x)$:
(1) domain, (2) (1) domain, (2) x, y intercepts, (3) vertical / horizontal asymptotes of the graph. the graph does not intersect vertical lines $x = a$ when a is not in
fixedom. Hedomain

Step 2. Analyze $f'(x)$:

(1) intervals where f is increasing ℓ decreasing, (2) critical points of f (3) relative extrema of *f*

Step 3. Analyze $f''(x)$:

(1) intervals of where *f* is convex/concave, (2) inflection points on the graph

 $\int_{f''<\delta/>0}$ f=0 and chayes sign.

⌅

Step 4. Sketch:

First label all asymptotes, intercepts, critical points, inflection points, then sketch the graph.

Example 7.2.2. Sketch the graph of

$$
f(x) = \frac{x}{(x+1)^2}.
$$

Solution.

Step 1. Analyze $f(x)$.

- 1. domain: $\{x \in \mathbb{R} \mid x \neq -1\}$
- 2. *x, y* intercepts:
	- Let $x = 0$, then $y = 0$; Let $y = 0$, then $x = 0$.
	- \Rightarrow only one intercept: $(0, 0)$
- 3. vertical and horizontal asymptotes:

$$
\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{-}} f(x) = -\infty \implies
$$
 vertical asymptote: $x = -1$

$$
\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0 \implies
$$
 horizontal asymptote: $y = 0$.

Step 2. Analyze $f'(x)$.

$$
f'(x) = \frac{1-x}{(x+1)^3} = 0 \Rightarrow x = 1.
$$

only one critical point: 1 (with corresponding critical value $\frac{1}{4}$), at which a relative maximum occurs. $(x = -1$ is not in the domain.)

Step 3. Analyze $f''(x)$.

$$
f''(x) = \frac{2(x-2)}{(x+1)^4} = 0 \quad \Rightarrow \quad x = 2.
$$

	$(-\infty, -1)$ +	$(-1, 2)$		$(2, +\infty)$
f''(x)				
graph of $f(x)$			inflection point	

inflection point: $(2, \frac{2}{9})$

Step 4. Sketch.

Exercise 7.2.1. Sketch the graph of $3x^4 - 4x^3$.

⌅

$$
x \rightarrow y = x^3(3x-4) = 0
$$

11
$$
h\pi
$$
zondel asymptotes

\n
$$
\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{1}{x}(3x+4) \right) = 4
$$
\n
$$
\lim_{x \to -\infty} f(y) = \lim_{x \to -\infty} \left(\frac{1}{x}(3x+4) \right) = 6
$$
\n
$$
\lim_{x \to -\infty} f(y) = \lim_{x \to -\infty} \left(\frac{1}{x} \right) \lim_{x \to 0} f(y) = \lim_{x \to
$$